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Abstract. Humans recognize objects by combining multi-sensory infor-
mation in a coordinated fashion. However, visual-based and haptic-based
object recognition remain two separate research directions in robotics.
Visual images and haptic time series have different properties, which can
be difficult for robots to fuse for object recognition as humans do. In
this work, we propose an architecture to fuse visual, haptic and kines-
thetic data for object recognition, based on the multimodal Convolu-
tional Recurrent Neural Networks with Transformer. We use Convo-
lutional Neural Networks (CNNs) to learn spatial representation, Re-
current Neural Networks (RNNs) to model temporal relationships, and
Transformer’s self-attention and cross-attention structures to focus on
global and cross-modal information. We propose two fusion methods
and conduct experiments on the multimodal AU dataset. The results
show that our model offers higher accuracy than the latest multimodal
object recognition methods. We conduct an ablation study on the indi-
vidual components of the inputs to demonstrate the importance of mul-
timodal information in object recognition. The codes will be available at
https://github.com/SYLan2019/VHKOR.

Keywords: Object Recognition · Multimodal Deep Learning · Multi-
modal Fusion · Attention Mechanism.

1 Introduction

In the real world, object recognition is fundamental to many of the cognitive and
interactive capabilities of robots. With the development of sensor technology,
machine vision performs well in terms of object appearance recognition [12] and
object detection [29], as does machine haptics in texture recognition [19,5] and
material classification [20]. These methods are often relying on only one type of
sensory information. However, the information from a single modality may not be
sufficiently reliable for object recognition. For example, the quality of the visual
data can be affected by the quality of the camera, the presence of object occlusion
and illumination, while the haptic data can be affected by the type of the haptic
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sensor used, the area of the sensor placed, and the background noise presented in
the environment. Even with the best hardware and ideal scene conditions, there
are other issues that can cause significant challenges for object recognition with
a single modality, for example, when recognising the glass materials, or objects
with the same appearance but different content. To address these limitations,
we consider robotic object recognition by using multimodal information.

Recent studies have explored methods for fusing visual and haptic data
[28,8,9,6,13,27,18,21,24,3], but several challenges remain. Firstly, data in differ-
ent modalities have different characteristics and representations. For example,
image data is static, with a single image containing a wealth of visual informa-
tion. Tactile data, on the other hand, is time-series and has a high sampling rate.
Consequently, how to extract features from them effectively is still an important
issue. Secondly, it is challenging to make accurate connections between data in
more than two different modalities. Finally, multimodal fusion methods often re-
quire a large amount of computational resources and time, and how to improve
computational efficiency with expected recognition accuracy is also a practical
challenge. To address these issues, we design feature extraction networks for data
in three different modalities: visual, haptic and kinesthetic, where the kinesthetic
represents the kinematics information (more details can be seen in Section 4.1)
of the robot’s wrist, fingers and palm. Then, we propose two fusion methods
based on Transformer’s attention mechanisms and further improve the accuracy
and efficiency of robotic object recognition with multimodal information.

In this paper, we design a Convolutional Recurrent Neural Network (CRNN)
to extract features for data in three different modalities: visual, tactile and kines-
thetic. We use Convolutional Neural Networks (CNNs) to extract the features
of each modality, and use a Bi-directional Long Short Term Memory Network
(Bi-LSTM) [15] to model the temporal relationships of the tactile sequences.
Then, we use Transformer’s attention mechanism to fuse unaligned signals, thus
further improving the accuracy and efficiency of multimodal fused robotic object
recognition. The proposed method has an advantage of using fewer Transformer
encoders to achieve better performance than existing transformer based fusion
methods. We conducted experiments on the latest AU dataset [4] and compared
our method with popular methods in the field of robotic multimodal object
recognition.

The main contributions of this paper are summarized as follows:
- We design two new multimodal object recognition methods based on vi-
sual, haptic, and kinesthetic signals. A holistic neural network structure is
used for multi-input single-output classification with unaligned multimodal
data. Ablation experiments are performed to demonstrate the importance of
complementary multimodal signals for object recognition.

- We design different feature extraction networks based on the characteristics
of each signal, and combine the transformer with CNN and RNN. We com-
pare the effects of different fusion methods and the attention mechanisms
on multimodal classification networks. Our methods offer a higher accuracy
than the mainstream methods in the field of robotic multimodal object recog-
nition, and use fewer Transformer modules than the latest Transformer-based
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multimodal fusion methods, which result in a model of fewer parameters and
higher training speed.

2 Related Work

The study of multimodal fusion methods for robotic object recognition, grasp-
ing, and other operations is an emerging field. Initially, vision and haptics were
used jointly to generate descriptions of object surfaces [1], and later extended to
object recognition tasks [2]. Early works explored different ways of representing
and encoding visual images and haptic sequences, using Dynamic Time Warp-
ing (DTW), K Nearest Neighbor (K-NN), and the Extreme Learning Machine
(ELM) for classification [27,18,21]. However, more complex, higher-dimensional
real-world data cannot be described by fixed equations, and the computational
cost of the model designed for each specific task is prohibitive.

Since 2010s, Deep Learning (DL) has made outstanding contributions to vari-
ous tasks, thanks to its ability in learning abstract and high-level representations
of the data with a layered structure of the network. In recent years, CNNs have
been widely used for multimodal object recognition tasks. The vast majority of
work chooses CNNs or RNNs to extract features for each modal information,
and then fuse them in a connected layer [28,13]. Some of these methods require
a large amount of strictly aligned multimodal data to achieve good recognition
results [23], while others may use a CNN-only or RNN-only network, which has
disadvantages of a single network being difficult to effectively integrate different
modal information characteristics [17]. As for CNN-only network, the perfor-
mance of CNN is affected by the window size, where a small window may lead
to loss of information over long distances, while a large window may lead to
data sparsity problems and difficulties in training. As for RNN-only network,
although LSTM as a typical RNN network is a natural choice for understanding
haptic time series signals, it has been shown to be inferior to CNNs for haptic
classification [13]. The DL methods do not explicitly translate from one modality
to the other, as this is often very challenging.

Recent studies have demonstrated the effectiveness of attention mechanisms
for sequential and spatially distributed inputs. Recently proposed Multimodal
Transformer architecture (MulT [25]) in the field of Emotion Understanding
uses Transformer based models for cross-modal representation of language, au-
dio and visual modalities. Subsequently, some studies have extended attention
mechanisms to visual-haptic setting, focusing on the ability to extract fused fea-
tures of two modalities simultaneously. In [9], the self-attention mechanism is
used, while ignoring the modality-to-modality connection. In [8], the integration
of the self-attention mechanism and the cross-modal attention mechanism in a
single Transformer encoder may result in a limited expressive capability of the
model. The recent work Visuo-Tactile Transformers (VTT) [6] is a variant of
Vision Transformer (ViT) [11] where the inputs are sliced into many patches.
It breaks the internal structure of each modal information and requires a large
amount of training data and computational resources, which limits its practical
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applications. Although these studies explore the application of attention mech-
anisms to multimodal fusion, they only consider visual and haptic modalities
and neglect other possible modalities. Arguably, little work has been done us-
ing the fusion structure of CNN, RNN with Transformer in the field of robotic
multimodal object recognition.

Fig. 1. CRNN-SA network structure

3 Model Architectures

In general, our Multimodal CRNN with Transformer structure includes four
modules. (i) Tactile time series module: features are extracted using CNN and
Bi-LSTM networks, which preserve the spatial information and temporal rela-
tionships of the time series. (ii)Visual image module: due to the small num-
ber of images, features are extracted using pre-trained GoogLeNet and CNNs.
(iii) Kinesthetic sequence module: features are extracted using CNNs. All the
above three modules are the same in the subsequent methods. (iv) Transformer
encoder-based fusion module: for this we propose two different structures. The
first method (CRNN-SA) fuses the features of all modalities by computing the
weights and enhances the fusion by the self-attention mechanism (Figure 1). The
second method (CRNN-CA) obtains the cross-attention of each modality with
the fused modality and then concatenates them (Figure 2). Finally, the features
are classified based on the fused features. These two methods explore the effect
of different attention mechanisms and fusion methods on the object recognition.
Our approach belongs to feature-level fusion among information fusion methods
(the remaining two are data-level and decision-level fusion) and has been proven
to be more effective than other types of fusion methods in similar tasks [3].

3.1 Feature Extraction

Kinesthetic CNN Model The kinesthetic data collected in AU dataset [4]
consist of readings from the robot’s wrist and the infra-red proximity sensor,
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Fig. 2. CRNN-CA network structure

and the positions of each of the hand ’s five fingers. It is formally represented
as sequence data of short length and does not include temporal information.
Therefore, a three-layer one-dimensional convolutional neural network is used to
extract the features of the information. Each layer includes a batch normalization
and a rectified linear unit (ReLU) function as the activation function. Finally,
a global average pooling layer is added to replace the fully connected layer to
retain the global information. The CNN of the same structure is used for each
modality, as shown in Figure 1.

Visual CNN Model Due to the high cost of data collection in real-world
tasks, visual data in practical applications usually consists of a limited number
of images. As a result, the parameters of a large network may not be sufficiently
optimized with limited data. We adopt the idea of migration learning, using the
pre-trained Inception-v3 [22] model on the ImageNet [10] dataset as the basic
model, and then add the same convolutional neural network and an average
pooling layer as mentioned above to enhance feature extraction.

Haptic CRNN Model The haptic data in the AU dataset [4] are time se-
ries collected by five microphones set on the robot’s hands. Firstly, the spatial
features of the haptic data are extracted using the same convolutional neural
network. Then the temporal features are extracted with a bi-directional LSTM
(Bi-LSTM) [14]. Similarly, a global average pooling layer is added at the end.

Let {Xk, Xv, Xh} represent the kinesthetic, visual and haptic raw inputs.
We use the function Fg to represent Inception-v3, the function Fc to represent
the above three-layer CNN, and the function Fr to represent the Bi-LSTM. For
each input, the above process can be expressed as follows:

Dk = Fc(Xk)

Dv = Fc(Fg(Xv))

Dh = Fr(Fc(Xh)) (1)



6 X. Zhou et al.

3.2 Feature Fusion

In order to compare the fusion methods based on the Transformer’s self-attention
mechanism with the cross-attention mechanism, we designed two different net-
works. The two network structures differ in the fusion of multimodal features
but are identical in the feature extraction part. In structure (i) (Figure1), the
features of each modality are weighted and fused to obtain the kinesthetic-visual-
tactile fusion vector Dmerger, where wk, wv, wh are learnable parameters. The
internal connections of the fused features are then reinforced by the self-attention
module of the Transformer encoder as

Dmerger = [wk ·DT
k + wv ·DT

v + wh ·DT
h ]

T (2)

In structure (ii) (Figure 2), we draw on the idea of MulT for modal fusion us-
ing the encoder module of the Transformer. The potential connections between
different modalities are represented using cross-modal attention, followed by a
sequence model using fused features for prediction. The difference is that we
only use three cross-modal attention modules and three self-attention module
(six in total), whereas MulT uses six cross-modal attention modules and three
self-attention modules (nine in total). This is because we first fused the modal
features initially by the way of Equation (2), and then used the fusion vector
Dmerger as the common modality to perform cross-modal attention with each in-
dividual modal feature. This allows the potential representation of each modality
for the common modality to be learned and reduces the number of parameters
that need to be trained.

Before sending features to the transformer encoder to compute self or cross
attention, positional embedding needs to be added to the inputs, otherwise the
distance dependencies in the features would be lost. Let the input feature be D,
let its max length be L, its dimension be dk, and the position embedding vector
of element Di,j be PEi,j , given as

PEi,j =

{
sin( i

10000j/dk
), if j is even

cos( i
10000(j−1)/dk

), if j is odd
(3)

Then, the final input to the encoder, X, is

X = D + PE (4)

It is necessary to note that we do not perform word embedding on the input, as
here each element of the sequence feature corresponds to its native meaning and
has no higher dimensional meaning.

Multi-Head Self-Attention We implement the self-attention mechanism by
modifying the multi-head self-attention method in the Transformer architecture
[26]. The multi-headed self-attention mechanism is used to extract the internal
connections of the features of the fused modalities. Its structure is shown in
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Figure 1. The Transformer encoder consists of N identical self-attention layers.
Each self-attentive layer has two parts: (i) the Multi-Head Self-Attention and
Normalisation, (ii) the Feed Forward network. The number of attention heads is
H. Taking the n-th self-attention layer and the i-th attention head as an example,
and let the output of the previous layer be Zn−1. For n = 1, Zn−1 = X, where
X is defined in Equation (4). In this part, Q,K, V ∈ Rm×dk are the projected
queries, keys, and values respectively, and WQ,WK ,WV ∈ Rdmodel×dk are the
learned weight matrices for the projection, where dk is defined in the position
embedding and m is the number of samples in the input data.

Qi
n = Zn−1W

i
Q, Ki

n = Zn−1W
i
K , V i

n = Zn−1W
i
V (5)

Then the scaled dot-product attention is computed for each set, where Ai
n ∈

Rm×dk is the output for the set, and
√
dk is a scaling factor to stabilize the

gradients during training.

Ai
n = softmax

(
Qi

n(K
i
n)

T

√
dk

)
V i
n (6)

Finally, the attention outputs corresponding to the H sets are concatenated
and projected using another learned weight matrix, where WO

n ∈ RHdk×dmodel

is the learned weight matrix for the final projection,

An = concat(A1
n, A

2
n, ..., A

H
n )WO

n (7)

The layer also uses residual connectivity and layer normalization. After a
feed-forward network, Zn ∈ Rm×dmodel is the final output of the n-th multi-head
self-attention encoder,

Z ′
n = LayerNorm(Zn−1 +An)

Zn = FFN(Z ′
n) = LayerNorm(Z ′

n + fn(Z
′
n))

where f(Z ′
n) = W1max(0,W0Z

′
n + b0) + b1 (8)

Multi-Modal Cross-Attention We uses multi-headed cross-modal attention
to obtain the potential adaptation of a single modality to a multimodal fused
signal, with the structure shown in Figure 2. For each modality, only one layer of
cross-modal attention is used, which helps reduce over-parameterization of the
model. The fused features Dmerger are shown in Equation (2). For clarity, we
follow the deductive process in Multi-Head Self-Attention because the structure
within the two is similar. The difference lies in the calculation of the Q,K, V .
The multi-modal cross-attention of kinesthetic features Âi

k can be described as
follows, and other modalities can be generalized in the same way.

Q̂i
m = XmergerŴ

i
Q, K̂i

k = XkŴ
i
K , V̂ i

k = XkŴ
i
V

Âi
m→k ∼ Q̂i

m(K̂i
k)

T V̂ i
k

Âm→k = concat(Â1
m→k, Â

2
m→k, ..., Â

H
m→k)W

O

Z ′
m→k = LayerNorm(Xk + Âm→k)

Zm→k = FFN(Z ′
m→k) (9)
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The cross-modal attention of each modal feature is then fed into a Transformer
encoder with the self-attention module, and the resulting three vectors are con-
catenated and passed through fully-connected layers for object class prediction.

Zmerger = [(Zm→k); (Zm→v); (Zm→h)] (10)

4 Experiments and Results

In this section, we compare the performance of the two methods in this pa-
per with popular multimodal fusion techniques on the latest AU dataset used
for multimodal object recognition. Next, we perform a set of ablation studies
to evaluate the impact of multiple modal combinations on object recognition.
Finally, we analyse the reasons for false object prediction results.

4.1 Data Description and Preprocessing

Publicly available datasets in multimodal object recognition field are still rare
and of small size. We compared the PHAC-2 dataset (2015) [7], VHAC dataset
(2022) [28], Toprak S’ dataset (2018) [24] and the AU dataset (2021) [4]. Finally,
we chose the AU dataset because it is open source, has the largest number of
objects and contains three types of modal data. This dataset presents multimodal
data for 63 objects with some visual and haptic ambiguity, which contains visual,
kinesthetic and haptic (audio/vibrations) data. The data for each modal are not
collected simultaneously and are therefore unaligned.

Visual Data The visual data in AU dataset consist of four RGB images, a
background image for each object and three images of different faces of the
object. Because the amount of visual data in the AU dataset is small, we use
image enhancement techniques to make the training samples richer and more
diverse and to ensure there is no duplicated images in the training and test
sets. The methods are as follows: (i) Adjust the brightness and contrast of the
images to 0.7-1.3 times of their original values. (ii) Flip the image horizontally
and vertically. (iii) Rotate the image by 180°. The final visual data of each
object is expanded from 3 images to 50 images. During training and testing, each
image used as input is resized to 256x256 pixels, normalized, and the object is
segmented using background subtraction.

Kinesthetic Data The kinesthetic data includes the current readings of the
robot’s wrist, the positions of the five fingers and the readings of the IR proximity
sensor at the center of the palm for each exploration process (“unsupported
holding”, “enclosure”, and “pressure-squeeze”). We did not perform complex
preprocessing of the kinesthetic data, but simply concatenated them of each
sample in the same dimension.

Haptic Data The haptic data comprises vibration data collected by the five
channels/microphones during each exploration (“feel” and “pressure-poke”) with
a sampling rate of 400 kHz. Firstly, to compensate for the noise generated by
the robot actuators, cooling fans and other moving parts changes during data
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collection, we subtracted background noise from the raw haptic data. In addition,
since the sampling rate of the haptic data is much higher than that of other
modal data, we downsampled it to 2500 Hz to save the time and space cost of
computing. Finally, we normalized the haptic data as follows,

Ŝ =
S − S̄

σ
(11)

where S̄ and σ are the mean and standard deviation of the data in each micro-
phone channel, respectively.

4.2 Experimental Settings

Baseline Structures To evaluate the performance of the two methods in this
paper, we use two popular multimodal object recognition methods as base-
lines: the concatenation method similar to Zhang et al. (MMM) [28] and the
method adapted from MulT [25]. For feature extraction, we compare the CNN-
only method (CNN-T) and the RNN-only method (RNN-T) with the CRNN
method in this paper. In fusion level, we compared data-level fusion (Early),
decision-level fusion (Late) with the feature-level fusion of this paper.

Implementation Detail Adam [16] is used as the optimizer of the model, and
the learning rate lr is initially 0.0001. When the evaluation metric no longer
improves after 10 epochs, the learning rate is reduced to lr = lr ∗ 0.5. The
size of batch is 8, and the number of training epochs is 200. To quantitatively
evaluate our model, we use the classification accuracy and the weighted F1-score
as our evaluation metrics. The experiments were deployed on a host computer
configured with an NVIDIA GeForce RTX 3090 (24GB) GPU, and the GPU was
used for training throughout.

Loss Function We use the categorical crossentropy shown below as the loss
function,

Loss =

output size∑
i

yi · log ŷi (12)

where yi is the desired output and ŷi is the actual output.

4.3 Experimental Results

Table 1 shows the results of our methods against other popular methods on AU
dataset, where the red numbers are the best results and the blue numbers are
the second best results.

The results show that our method CRNN-SA has the best performance, fol-
lowed by our method CRNN-CA. Both have less number of parameters than the
MulT method. Based on the analysis of the results, we can draw the observa-
tions that (i) The complex modal fusion method does not improve the accuracy
of classification. (ii) The higher the degree of retaining the original features of
each modality, the more improvements it will lead to in terms of classification
results. (iii) Enhancing the attention within the fused features can help improve
classification performance.
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Table 1. Comparison of the multimodal fusion methods on AU dataset.

Models Feature Extraction Fusion Accuracy F1 score Parameters

MMM[28] CNN+RNN concatenation 0.8571 0.8317 1,060,482
MulT[25] CNN+RNN Transformer 0.8286 0.8026 1,110,842

CNN-T CNN Transformer 0.8632 0.8317 848,082
RNN-T RNN Transformer 0.8234 0.8101 715,474

Early CNN concatenation 0.7222 0.6866 273,855
Late CNN+RNN decision fusion 0.8535 0.8212 1,096,703

CRNN-SA(ours) CNN+RNN Transformer 0.9127 0.9061 1,070,128
CRNN-CA(ours) CNN+RNN Transformer 0.8746 0.8505 1,105,190

Ablation Study To further investigate the impact of individual modal data in a
multimodal object recognition task, we conducted ablation studies on AU dataset
and the results are shown in Table 2. Firstly, we compare the classification
accuracy on our method (CRNN-SA) using only unimodal data (visual, haptic
or kinesthetic) as input. Then, we compared the classification accuracy on our
method (CRNN-SA) using a combination of two modal data as input.

Table 2. Comparison of the visual-haptic-kinesthetic inputs on AU dataset.

Inputs data Accuracy F1 score

visual 0.6195 0.6013
haptic 0.7635 0.7495
kinesthetic 0.5970 0.5903

visual+haptic 0.8889 0.8630
visual+kinesthetic 0.6540 0.6255
haptic+kinesthetic 0.8071 0.7781

visual+haptic+kinesthetic 0.9127 0.9061

Table 2 shows the comparison results on AU dataset using our method and
different combinations of inputs, where the red numbers are the best results.
Because this dataset contains objects that are visually or haptically ambiguous,
the classification results for unimodal data are much lower than multimodal,
which is consistent with our experience in life. And the results demonstrate the
importance of the haptic data.

5 Conclusion

In this paper, we have presented two multimodal object recognition methods
(CRNN-SA, CRNN-CA), where we have made improvements for existing meth-
ods in both the feature extraction and feature fusion steps. After extracting
each modal feature using the CRNN method, we fuse the feaures with Trans-
former’s self-attention mechanism and fully connected layers in CRNN-SA, and
with the multi-modal cross-attention mechanism adapted from MulT in CRNN-
CA. Both methods are applicable to unaligned multimodal data. Among them,
the CRNN-SA method outperforms the most popular CNN-only with concate-
nation method in terms of classification accuracy, and the CRNN-CA method
proposes a new cross-modal attention mechanism and uses fewer encoder mod-
ules than the MulT method. Future work aims to create a multimodal object
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recognition dataset, and explore the integration of deep learning with reinforce-
ment learning, with a view to deploying the results in real-world applications.
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